Repetitive Hyperbaric Oxygenation Attenuates Reactive Astrogliosis and Suppresses Expression of Inflammatory Mediators in the Rat Model of Brain Injury

نویسندگان

  • Irena Lavrnja
  • Ana Parabucki
  • Predrag Brkic
  • Tomislav Jovanovic
  • Sanja Dacic
  • Danijela Savic
  • Igor Pantic
  • Mirjana Stojiljkovic
  • Sanja Pekovic
چکیده

The exact mechanisms by which treatment with hyperbaric oxygen (HBOT) exerts its beneficial effects on recovery after brain injury are still unrevealed. Therefore, in this study we investigated the influence of repetitive HBOT on the reactive astrogliosis and expression of mediators of inflammation after cortical stab injury (CSI). CSI was performed on male Wistar rats, divided into control, sham, and lesioned groups with appropriate HBO. The HBOT protocol was as follows: 10 minutes of slow compression, 2.5 atmospheres absolute (ATA) for 60 minutes, and 10 minutes of slow decompression, once a day for 10 consecutive days. Data obtained using real-time polymerase chain reaction, Western blot, and immunohistochemical and immunofluorescence analyses revealed that repetitive HBOT applied after the CSI attenuates reactive astrogliosis and glial scarring, and reduces expression of GFAP (glial fibrillary acidic protein), vimentin, and ICAM-1 (intercellular adhesion molecule-1) both at gene and tissue levels. In addition, HBOT prevents expression of CD40 and its ligand CD40L on microglia, neutrophils, cortical neurons, and reactive astrocytes. Accordingly, repetitive HBOT, by prevention of glial scarring and limiting of expression of inflammatory mediators, supports formation of more permissive environment for repair and regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P34: Berberin Exerts Neuroprotective Effects by Modulating Pro and Anti-Inflammatory Cytokines in Rat Model of MCAO

Many complicated mechanisms are involved in brain ischemia and the role of inflammatory factors in the progression of post-ischemic injury is inevitable. In present study, anti-inflammatory effect of berberine has been investigated in reperfusion injury after acute ischemic stroke. Male Wistar rats weighing 250-270 gr were randomly divided into four cohorts: healthy rats (control, n=20), sham-o...

متن کامل

The Effect of Sitagliptin on Inflammatory Mediators in the Ovary of Rat with Polycystic Ovary Syndrome

Background and Aims: Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disease in females of reproductive age and is a significant infertility cause. Inflammation plays a crucial role in the pathogenesis of PCOS. The present study evaluated whether sitagliptin, dipeptidyl peptidase-4 inhibitor, attenuates inflammatory markers C-reactive protein (CRP), interleukin(IL)-6, tumor necro...

متن کامل

Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via ‎Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein ‎Expression

Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...

متن کامل

Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms

Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...

متن کامل

Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015